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It is shown that in a cluster of many colloids, trapped at a liquid-air interface, the well-known vertical-force-
induced pairwise logarithmic attraction changes to a strongly enhanced power-law attraction. In large two-
dimensional clusters, the attraction energy scales as the inverse square of the distance between colloids. The
enhancement is given by the ratio �= �square of the capillary length�/�interface surface area per colloid� and
can be as large as 105. This explains why a very small vertical force on colloids, which is too weak to bring two
of them together, can stabilize many-body structures on a liquid-air interface. The profile of a cluster is shown
to consist of a large slow collective envelope modulated by a fast low-amplitude perturbation due to individual
colloids. A closed equation for the slow envelope, which incorporates an arbitrary power-law repulsion be-
tween colloids, is derived. For example, this equation is solved for a large circular cluster with the hard-core
colloid repulsion. It is suggested that the predicted effect is responsible for mysterious stabilization of colloidal
structures observed in experiments on a surface of isotropic liquid and nematic liquid crystal.
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I. INTRODUCTION

A vertical force f applied to each of two colloids, trapped
at a liquid-air interface, induces their logarithmic attraction
with the potential

U2 = −
f2

2��
ln��/L� , �1�

where � is the surface tension of the interface, �=�� / p is
the capillary length of the liquid with the specific weight p,
and L�� is the distance between the colloids �1,2�. The
vertical force f can be of different origin, e.g., the colloid’s
weight minus buoyancy �1,2�. This is called capillary attrac-
tion. Equation �1� is a good approximation of the interaction
of a colloid pair for distances L much larger than the colloid
size 2R. Usually, however, one deals with the interface with
many colloids that can form variety of two-dimensional
structures, in which L can be very close to 2R �3–16�. Some
of them, such as clusters on an isotropic liquid �4–6,8� and
hexagonal lattices on a nematic liquid crystal �14–16�, are
stabilized by attractive forces between colloids. Analysis
shows that an appreciable attractive component is also
present in many structures stabilized by repulsion �11,12�.
The general problem of stabilization of colloidal structures
on a liquid-air interface requires knowledge of the attractive
forces in many-body colloidal systems. So far this problem
has been addressed in terms of the pairwise potential U2 �1�
�4–6,8,15,16,18–20� or by considering three- and four-
colloid systems �17�. However, the long-range character of
U2 casts considerable doubt on its applicability to the many-
body problem. First, U2 is derived under the simplifying as-
sumption that the interface profile with two colloids is a sum
of the profiles induced by each of them individually
�1,2,18,19�. It can be verified that even in a system of three
colloids at not very small distances, this assumption results

in nonphysical profiles �with maxima outside the colloid-
liquid contact lines�. Second, the contribution of a long-
range potential to the energy at a given point is growing with
the distance from this point, so that the many-body effect of
the periphery can be more important than the pairwise con-
tribution of the close neighbors. Therefore, many colloids on
the liquid interface have to be considered as an actual many-
body system without resorting to the pairwise potential U2.
Moreover, experimental data �4–6,12,15,16,20� have shown
that Eq. �1� predicts a much weaker attraction than is actually
required for stabilization of the structures observed.

The usual problem researchers encounter when trying to
explain a stabilization of colloidal clusters at a liquid-air in-
terface is that, given that the repulsion energy is known, the
force f is highly insufficient to induce the pairwise capillary
attraction U2, Eq. �1�, of the same order. When the liquid is
isotropic, the force f is usually due to the gravity and is equal
to the colloid weight minus buoyancy �4–6�; recent develop-
ment of the field of nematic emulsions has given another
example when the force f experienced by colloids on a
nematic-liquid-crystal–air interface is due to the elasticity of
the anisotropic nematic liquid �14–16,20�. Typically, on a
liquid surface one observes a stable cluster �or hexagonal
lattice� of micrometer-sized colloids where the force f is suf-
ficient to provide the capillary attraction energy U2 of order
��10−3–10−2�kT, whereas the destabilizing repulsion energy
is at the least of the order of kT due to the necessarily present
chaotic thermal motion �4,5�, or even as large as 102kT due
to the force of electrostatic �6� or elastic �14–16,20� origin.
Nevertheless, the clusters are stabilized by some attraction
that should be four to five orders of magnitude stronger than
the pairwise attraction given by formula �1�. In addition, the
diversity of shapes of different many-body structures formed
by colloids on a liquid surface is both impressive and chal-
lenging: circular clusters, frothlike clusters with voids sepa-
rated by thin bands, and cellular voids separated by chains of
colloids. The origin of this mysteriously strong capillary at-
traction stabilizing all these shapes of colloidal clusters on a
liquid surface remains unknown. The authors of Ref. �6� at-*victorpergam@yahoo.com
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tributed the strong attraction they revealed experimentally to
a very peculiar shape of the colloid-liquid contact lines.
Apart from the particular problems this interpretation has to
face, this approach exemplifies the current situation when
either the strong colloidal attraction is explained by factors
very specific to a given system or it is admitted that its origin
is unknown. The data on the cluster stabilization on a liquid
surface, however, point to the existence of some universal
attraction source. In this paper, I show that in a cluster of
many colloids the interaction is very different from U2: the
collective effect results in a universal attractive force that is
much stronger than the pairwise one and no longer logarith-
mic. The many-body attraction potential is found to be pro-
portional to the enhancement factor �=�2/�surface area per
colloid�, which scales as L−2. The enhancement factor can be
as large as 104–105. It is shown how this interaction can
explain large two-dimensional clusters. In Sec. II, the strong
attraction is derived from simple qualitative arguments. Sec-
tion III presents exact equations describing the meniscus
with colloids. In Sec. IV, it is shown that the meniscus height
consists of a large slow envelope and low-amplitude fast
modulation. In Sec. V, the coarse-graining approach is devel-
oped, the repulsive force is introduced into the theory, and
the general formula for the collective attractive force and a
closed equation for the slow envelope are derived. In Sec.
VI, this equation is solved for a particular case of a large
circular cluster, stabilized by the hard-core repulsion, and the
enhancement of the attractive force, attractive energy, and
the slow envelope in comparison to their single-colloid val-
ues is presented. In Sec. VII, it is shown that the obtained
results can explain the mysterious attraction in large clusters
on surfaces of a nematic liquid crystal and isotropic liquids
observed experimentally.

II. QUALITATIVE DERIVATION OF THE MANY-BODY
ATTRACTION

I will begin by presenting a key idea leading to the strong
attraction. Let a large number N of colloids occupy an inter-
face surface area of a radius RN, i.e., an average surface area
per colloid is S1=�RN

2 /N. A vertical force f in the upward
direction is applied to every colloid, which makes the inter-
face height h increase in the cluster area. Clearly, the varia-
tion of h in this cluster has two quite different length scales.
The short one is determined by the periodicity L of the col-
loids’ arrangement and is thus related to S1 as �L2 /4�S1.
The long one is determined by the cluster size RN�L, i.e.,
roughly speaking, it has almost a constant value H within the
cluster and smoothly vanishes over its outskirts. Thus, H is
the simple average of h over the length scale of several clus-
ter periods L and must be determined by average quantities
such as S1. This H can be easily estimated from the average
of the standard pressure balance on the interface: the average
upward pressure increase due to the force f is Pf = f /S1 and
must be balanced by the correspondent decrease of the hy-
drostatic pressure Phyd=−pH. The equation Pf + Phyd=0
gives H� f / pS1. Let us compare this with the f-induced
height h1 of a single remote colloid. Such a colloid occupies
the surface area ���2 restricted by the capillary length, and

the averaged pressure balance gives h1� f / p��2= f /��,
which is indeed a correct estimate �cf. Eq. �2� below�. But
this h1 is much less than H: the above estimates can be cast
in the form H�h1�, where �=��2 /S1��� /L�2�1, since
the capillary length � is of a millimeter scale whereas L is
just about several micrometers. We see that the average
height of the cluster is � times the height of a single remote
colloid with ��104–105. At the same time, the fast varia-
tion h−H should not depend on the overall height of the
interface and thus is expected to be of the order of h1. Thus,
the key difference between the energies and forces in a few
colloid system and in a dense cluster lies in the enhancement
�=H /h1, for the attractive energy per colloid is determined
by the work fh done by the force f to elevate the colloid
along with the interface. Using this as a guiding idea, the
many-body effect can be simply estimated as follows.

The pair attraction derives from the energy gain �hf
equal to the work done by the force f when the height of the
interface is changed by h �1,2,21�. For a single colloid with
the radius R of the contact line, this h=h1, where

h1 =
f

2��
ln��/R� , �2�

and the energy gain of the colloid is h1f � f2 /2��, which is
of the same order as the energy U2 of the pairwise attraction
�1,2�. Now we will show that for a cluster of N colloids
separated by distances L��, the variation of the interface

profile h̃�h1, while the total height h over �or under� the
unperturbed meniscus far from the cluster is much larger: it

is the sum h=H+ h̃, where H varies much slower than h̃, but

H� h̃; see Fig. 1�a�. To estimate h in comparison with h̃
�h1, let us for a moment view the interface occupied by the
colloids as smooth with a constant height H. As the hydro-
static pressure on the colloid’s surface submerged in the liq-
uid depends on the height H of the interface, the total force
fc acting on a colloid depends on H. Namely,

fc = f − pHSc, �3�

where f is H independent and the second term accounts for
the change of the hydrostatic pressure on the colloid; Sc is
the surface area bounded by the contact line. For simplicity,
the constant force f here and henceforth is assumed to be the
same for all colloids. Due to the contact with colloids, the
plane surface of the height H is subject to the average pres-
sure Pc= fc /S1, where S1�L2 is the surface area of the cluster
per colloid. The total force �fc /S1�S1= fc due to this pressure
must be equalized by the hydrostatic pressure −pH acting on
the free meniscus, which has the surface area S1−Sc. Thus,
the force balance on the flat cluster’s surface has the form

�f − pHSc� − pH�S1 − Sc� = 0, �4�

from which f = pHS1. This equality is particularly clear: in
the equilibrium, the force f on each colloid must be balanced
by the hydrostatic pressure on the piece of the interface per
colloid. Thus, the height H is given by the formula
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H =
f

S1p
= h1

2��2

S1 ln��/R�
� h1��

L
�2

. �5�

As usually ��1 mm whereas L�several 	m, this H�h1.

At the same time, the variation h̃ of the meniscus profile is
expected not to depend explicitly on the overall height H of

the cluster surface and hence h̃�h1 �a detailed estimate of h1

will be done in Sec. IV�. Thus, H� h̃ in accord with the
above assumption of an almost flat interface. As a result, the
energy gain per colloid in the cluster EN /N� fH
�U2�� /L�2�U2, and the attractive force �U2�� /L�2 /L,
which is at least a few orders of magnitude larger than the
pair force �U2 /L.

The same conclusion can be achieved by considering con-
servation of the liquid’s volume. The interface profile in-
duced by a single colloid is known to be �2�

h�r� =
h1K0�r/��
K0�R/��

, �6�

where Kn is a modified Bessel function of the second kind of
order n, and r is the distance from the colloid’s center. The
total volume of liquid over �or under if f 
0� the remote flat
meniscus of a single colloid is

V1 = 2�	
R

�

hr dr = f�2/� . �7�

Then N colloids have the volume Nf�2 /�. If these colloids
formed a cluster of the surface area NS1 in which the surface
height is H, then the volume of liquid is NHS1. But the
volume of liquid should not change during the clusterization

process. Then, equating the volumes of liquid in the cluster
and in the system of N well-separated colloids gives again
the estimate �5�.

Now it is in order to do some numerical estimates and
comment on the result qualitatively obtained above. For typi-
cal value of the surface tension ��10−2 J /m2, the force f
giving rise to U2�kT is of the order f �10−11N while the
height h1�5 nm; for U2�10−3kT, f �10−12N and h1
�0.5 nm. In both cases, the derivative 
�nh�R�
= f / �2��R�
of the height h in the direction normal to the colloid’s surface
is very small, 
�nh�R�
�10−3. This justifies the use of the
approximate expression ��nh�R� for the density of the
surface-tension-induced vertical force on the contact line:
this widely used expression is essential both for the deriva-
tion of Eq. �1� �1,2� and for our theory developed below.

Let us now estimate the smooth coarse-grained height H
�5� and the many-body attraction energy EN /N per colloid in
a cluster of colloids separated by the distance L, say, L
�10 	m, and for the capillary length �=1 mm. Equation �5�
gives that if the force f �10−12N, then H�1 	m and
EN /N�102kT as compared to the pairwise energy U2
�10−3kT; if f �10−11N, then H�10 	m and EN /N�105kT
as compared to the pairwise energy U2�kT. We see that our
estimates show a strong colloidal attraction on a liquid sur-
face, which is consistent with the experimental data and ex-
plained solely in terms of the standard capillary quantities as
an essentially many-body effect. Now we will derive a more
precise result from the equations of interface statics.

III. STATIC EQUILIBRIUM OF A LIQUID INTERFACE
WITH A CLUSTER OF COLLOIDS: DETAILED

DESCRIPTION

Consider a liquid-air interface with a cluster of N colloids
and choose the reference plane S which coincides with the
flat meniscus far from the cluster, Fig. 1�a�. The height h�x�
is the vertical deviation of the liquid surface from S at x
�S. The meniscus �part of the interface outside the colloids�,
its inner boundary with colloids �all the contact lines�, and
the remote outer boundary have the onto-S projections Sm,
�Sm, and �Sout, respectively. The intrinsic contact line �Sm
consists of the onto-S projections �Sc of the contact lines of
individual colloids, �Sm= ��Sc �for brevity we will call Sm
just meniscus, and �Sm and �Sc just the total and individual
contact line�. The meniscus is subject to a pressure P�x� of
any origin except of the hydrostatic one, which is �h and
described separately. The vertical force fc is transferred to
the meniscus via the contact line. The total force �fc on the
contact line is distributed over the total inner meniscus

boundary �Sm with the line density f̃ c,

	
�Sm

dl f̃c = � fc, �8�

where the summation is over all colloids in the cluster. The
extrema of the energy functional must coincide with the cor-
rect equations describing the static equilibrium on the menis-
cus Sm and on its boundaries �Sm and �Sout. Under the stan-
dard assumption that the derivatives of h are very small, this
energy functional has the form

a
f

S1

L

Sm

h
Hb

h

L/2
X
S1,m

∂S1

H

R

b

S X S

H0

c

∂Sc

FIG. 1. �Color online� �a� Cluster of spherical colloids on a
liquid-air interface, its exact height h and slow envelope H induced

by the force f directed upward. The magnitudes of H, h, and h̃=h
−H are greatly exaggerated: while the colloid diameter and the
separation L are of several micrometers, H can be as large as a

micrometer, whereas the fast modulation h̃ is just about a nano-
meter. �b� Single cell of the interface around the colloid at X and its
projection S1 onto the reference plane S. �c� Top view on a hexago-
nal cluster of 13 colloids; the dashed line shows the boundary �S1

of the single elementary cell S1.
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E�h
 =
�

2
	

Sm

dS���h�2 + �−2h2 − 2�−1Ph�

− 	
�Sm

dl	
0

h�l�

dh� f̃ c�h�� , �9�

where � is the 2d gradient operator; h, P, and f are positive
in the upward direction. The first term is the standard energy
of the meniscus Sm plus its potential energy in the field of the
pressure on the interface. The last term is the potential en-
ergy of the colloid calculated as the work done on it by the
contact line. The work done by the element dl thereof when

it is displaced by dh�l� is equal to −dl f̃c�h�dh; the total work
to displace dl by h�l� is obtained by the h integration from 0
to h�l�, where h�l� is the interface height at point l of the
contact line �Sm. The total work of the contact line is ob-
tained by the l integration along the whole contact line �Sm.
If the force fc is homogeneously distributed along the contact

line, then f̃ c= fc /2�R, the height does not depend on the
point l of the contact line, h�l�=h=const, and the last integral
in Eq. �9� takes its simple familiar form

	
�Sm

dl	
0

h

dh�fc/2�R� = 2�R�fc/2�R�h = fch . �10�

The Euler-Lagrange equation and boundary conditions for
E�h
 read


h − �−2h + �−1P = 0, x � Sm, �11�

��nh = f̃ c�x�, x � �Sm, �12�

h = 0, x � �Sout, �13�

where �nh is the derivative along the outer normal to the
meniscus boundary �at �Sm it is directed inward to the col-
loids�. Equations �11� and �12� are the correct equations of
the force balance at each point of, respectively, the meniscus
and the contact lines, which justifies the form of the func-
tional E�h
 �9�. The condition �13� implies that the interface
is large so that far from the cluster its height remains unper-
turbed.

The functional �9� describes the interaction of any number
of colloids of arbitrary shape. The colloids as the sources of
the interface deformations enter the theory via the boundary
conditions �12� on their contact lines. Under the standard
assumption 
�nh
�1, implied in our consideration, the con-
tact lines �meaning their projection onto S� do not depend on
h and can be taken in their reference form obtained for fc
= P=�−2=0, i.e., when the meniscus is flat and the only
forces present are those of the surface tensions �of the three
interfaces involved� �1,2�. Thus, each contact line �Sc has a
shape that does not depend on h, remains always the same,
but can change its position and orientation along with the
colloid. In what follows, we assume for simplicity that all the
contact lines are circumferences of the same radius R and
therefore can only change positions X of their centers.

The equilibrium value E of E�h
 is obtained by multiply-
ing Eq. �11� with h and integrating over Sm. After the by-part
integration of the 
h term and use of the boundary condi-
tions �12� and �13�, one obtains

E = −
1

2
	

Sm

dSPh −
1

2
	

�Sm

dl	
0

h�l�

dh� f̃ c�h�� . �14�

So far we have considered the exact profile h. Now we will

first show that h can be represented as the sum h= h̃+H,

where h̃ is fast varying over the length scale �L but is small,

whereas H is a slow function, but much larger than h̃, Fig. 1;
then make the correspondent simplifications, introduce po-
tential of a repulsive force between colloids, and finally de-
rive an equation for the slow envelope H. Note that, as
shown below, Eq. �42�, under condition �13� the total volume
of liquid is automatically conserved if the derivative of h at
the cluster boundary is continuous.

IV. FAST AND SLOW COMPONENTS OF h

The part SN of the total interface area occupied by the
cluster consists of the cells with the onto-S projections S1�X�,
one cell per colloid centered at X, Figs. 1�b� and 1�c�. In
general, these cells might be different, but close to equilib-
rium they have more or less similar dimensions �L and the
surface area S1�SN /N �we use the same notations for two-
dimensional sets and their surface areas�. Each cell S1 is
separated from other cells by a closed line �S1 at which the
normal derivative of h vanishes, �nh=0. As said above, we
assume that all the contact lines �Sc are circumferences of
radius R. If, e.g., such colloids form a hexagonal lattice, Figs.
1�b� and 1�c�, then each S1 is the Wigner-Seitz cell and each
line �S1 is a regular hexagon, at which, due to the symmetry,
�nh=0.

We assume that the pressure P changes little over the cell
size and the only source of the fast variation of h is the force
on the contact lines with colloids. In the polar coordinates

X= �
r ,�� with the onset at X, Fig. 1�b�, the solution of
Eq. �11� for the single cell S1�X� is

h = aK0�
r/�� + bI0�
r/�� + h5 �
r,�� + ��2/��P , �15�

where K0 and I0 are modified Bessel functions. The function

h̃̃ is periodic or close to periodic in �. For instance, in the
case of a hexagonal lattice, the symmetry dictates that

h5hex = �
n=1

�

�cnK6n�
r/�� + dnI6n�
r/���cos�6n�� �16�

with certain coefficients cn and dn.
This h �15� is subject to the two boundary conditions: Eq.

�12�, at the contact line �Sc�X�, and �nh=0, at the outer cell
boundary �S1�X�, which can be approximated by the circum-
ference of radius L /2 and surface area S1=�L2 /4. Because

of its quasiperiodicity in �, h̃̃ does not contribute to the line
integral over the contours �Sc�X� and �S1�X�, which can be
used to find the constants a and b in Eq. �15�. Using the

V. M. PERGAMENSHCHIK PHYSICAL REVIEW E 79, 011407 �2009�

011407-4



small-x asymptotics K0�x��−ln x, I0�x��1+x2 /4 in the ex-
pression �15�, and integrating Eq. �12� along the single con-
tact line �Sc gives

2���a − �R2/2�2�b� = fc. �17�

Integrating �nh=0 along the outer boundary �S1 gives an-
other equation,

a − �L2/8�2�b = 0. �18�

Solving the system �17� and �18� with respect to a and b, one

gets h= h̃+H, where

h̃ = h̃0�ln��/
r� + 8�
r/L�2 + h5 �
r,��� , �19�

h̃0 =
fc

���1 − 4R2/L2�
, �20�

and

H =
fc

��

�4�/L�2

�1 − 4R2/L2�
+ P/p . �21�

Now we see that H in Eq. �21� can be identified with H in
Eqs. �5� and �3�. Substituting fc from Eqs. �3� and �21� and
solving the thus obtained equation with respect to H gives

H =
f

��
�4�/L�2 +

P�1 − 4R2/L2�
pg

. �22�

In terms of the surface areas S1=�L2 /4 and Sc=�R2 and h1
�2�, the above formulas for the two amplitudes go over into

H =
h1

ln��/R�
2��2

S1
+

P�S1 − Sc�
pS1

, �23�

h̃0 = H��2��2

S1
� . �24�

We see that H, which reproduces Eq. �5� for P=0, is much

larger than h̃0: H�h1�� /L�2, whereas h̃0�h1. Note that the

first term in h̃ �19� goes over into h1 when 
r=R and S1
→2��2, as it should be.

The solution �19�–�21� has a clear meaning. Neglecting

�nH as compared to �nh̃ and using �nh��S1�=0, the fast

component h̃ can be estimated from Eq. �12�: h̃
��f /�L��L /2��= �f /2����h1. Via the contact line, the
force f is transferred to the meniscus in the form of Laplace’s
pressure, which, in the cell of a small radius L /2, is large,

�
h̃ � ���nh̃�R� − �nh̃�L/2��/�L/2� � f/�2��L/2�2�

�the first term in Eq. �11��, and must be balanced by the
hydrostatic pressure −pH+ P= �−�−2H+ P /��� with large H
�second and third terms in Eq. �11��.

The amplitude of h̃̃, Eq. �15�, which is periodic in the
azimuthal variable � and which disappeared from the aver-
aged boundary conditions �17� and �18�, can be estimated

from the requirement that h̃̃ compensates deviation of the
actual contour �S1 from the circumference as to assure the

condition �nh̃=0 at each point thereof. For the hexagonal

lattice, h̃̃��1− ��3 /2�2��0.25, and one concludes that h̃

� h̃0�H. Thus, as expected, h̃ is fast changing but small,
whereas H is slow but large, Figs. 1�a� and 1�b�.

V. COARSE-GRAINED DESCRIPTION OF COLLOIDAL
CLUSTERS: EQUATION FOR THE SLOW

ENVELOPE H(X)

The equation for the slow envelope H is derived by aver-
aging the exact Euler-Lagrange equation �11� over the me-
niscus S1,m=S1 \Sc of the individual cell at X which has the
surface area S1,m�X�=S1�X�−Sc, where Sc=�R2. Substituting

h= h̃+H in Eq. �11� and integrating over S1,m in the context

of the inequality h̃�H gives

0 = 	
S1,m

dS
h̃�X,
r,�� + 
H�X�S1,m�X� + �− �−2H�X�

+ �−1P�X��S1�X� . �25�

The boundary conditions at �Sc, �S1, and �Sout now have,
respectively, the following form:

��n�h̃ + H� = f̃ c�x�, x � �Sc, �26�

�nh̃ = 0, x � �S1, �27�

H = 0, x � �Sout. �28�

The first term in Eq. �25� can be transformed to the line
integral, using Gauss’s theorem, and then expressed via the
force fc�X� from Eq. �26�,

	
S1,m

dS
h̃ = 	
�Sc

dl�nh̃ = fc/� − 	
�Sc

dl�nH

= fc/� + 	
Sc

dS
H = fc/� + Sc
H . �29�

Introducing the colloid surface density �=1 /S1 and combin-
ing Eq. �25� with Eqs. �29� and �3� gives the following equa-
tion for the slow envelope height H�X�:


H − �−2H + �−1�P + �f� = 0. �30�

Equation �30� determines H�X� as a function of the coarse-
grained coordinate X provided the effective pressure P+�f is
known. The force-induced effective pressure in the form �f
= f /S1 is in line with our qualitative consideration in Sec. II.
To determine the density �, we need to introduce the repul-
sive force between colloids.

To specify the repulsive force f rep, we introduce a repul-
sive potential U that describes the repulsive energy of a
single colloid separated from colloids in the neighboring
cells by the distance L. We will restrict our consideration to
power-law forces,

STRONG COLLECTIVE ATTRACTION IN COLLOIDAL … PHYSICAL REVIEW E 79, 011407 �2009�

011407-5



f rep =
u

Ln , �31�

where u and n are positive constants. It is easy to see that
both f rep and U can be considered as functions of density �
since the distance L and the colloid density are related:
1 /�=S1=�cL

2 /4, where �c is the geometrical constant of the
single cell �for a hexagonal lattice �c=2�3�. Then L
= ��c� /4�−1/2 and the repulsive force �31� becomes

f rep��� = u��c�/4�n/2. �32�

The potential U��� should be introduced as to give the cor-
rect repulsive force. To introduce the potential U, one needs
the energy functional. Equation �30� for the envelope H �i.e.,
the equation of the vertical balance� and the equation of the
force balance in the horizontal direction along the meniscus
can be derived from the energy functional

Ē�H,�
 =
�

2
	

S

d2X���H�2 + �−2H2 − 2�−1�P + �f�H

+ 2�−1�U���� �33�

and the single boundary condition that H→0 far from the

cluster. Indeed, the equation �Ē�H ,�
 /�H=0 coincides with

Eq. �30�. The � equation, �Ē�H ,S1
 /��=0, reads

− fH +
��U

��
= 0. �34�

The force density, by definition, is minus variation of the
energy functional with respect to the interparticle distance L,

i.e., −�Ē�H ,�
 /�L=−��Ē�H ,�
 /������ /�L�, and the force
per colloids is obtained by dividing this by the density �.
Therefore, multiplying Eq. �34� by −��� /�L� /�=−1 /L, we
get exactly the force balance fattr+ f rep=0, where

fattr�X� = −
fH

L
�35�

is the attractive force, and

f rep��� = 2�1/2��c/4�1/2��U

��
�36�

is the repulsion force. Equating Eqs. �32� and �36� yields the
desired expression for the repulsive potential as a function of
�,

U��� =
u

n + 1
��c�/4��n−1�/2. �37�

Now Eq. �34� of force balance can be solved to find � as a
function of another variable H. To this end, expression �37�
is substituted into Eq. �34�, whence

� =
4

�c
�2f

u
H�2/�n−1�

. �38�

Making use of this formula in the H Eq. �30�, one finally
obtains a closed equation describing the slow envelope H,
when the repulsive force dies out as a power law �31�. This
equation has the following form:


H − �−2H + cnH2/�n−1� + �−1P = 0, �39�

where

cn =
4f

�c�
�2f

u
�2/�n−1�

. �40�

On finding H�X� from this equation, ��X� is obtained from
formula �38�; then the equilibrium distance between colloids
is L�X�= ��c� /4�−1/2 and the attractive force between col-
loids at X can be found from the general formula �35�. We
postpone discussion of Eq. �39� for different repulsion indi-
ces n until the next section.

The equilibrium value of Ē derives from Eqs. �33� and
�30� the same way the exact energy �9� was derived above
and has the form

Ē =
1

2
	

S

d2X�pH2/2 − ��f + P�H + 2�U� . �41�

Except for the repulsion term, this Ē can also be obtained
directly from the exact equilibrium energy E �14�.

To complete this section, we show that no additional care
has to be taken to assure conservation of the total volume of
liquid under the condition �28�. The total volume V of liquid
is conserved identically provided the normal derivative �nH
is continuous at the cluster boundary and H vanishes at the
outer boundary �Sout of the meniscus. Indeed, calculating this
volume with H expressed from the equilibrium equation
�30�, one has

V = 	
S

d2XH = �2	
S

d2X�
H + �P + �f�/��

= �2	
�Sout

dl�nH +
1

p
	

S

d2XP + �f�2/��N

=
1

p
	

S

d2XP + NV1, �42�

where V1 is the volume �7� over �under� the meniscus of a
single remote colloid and

N = 	
S

d2X��X� �43�

is the total number of colloids in the cluster. Thus, if the total
surface S is very large �formally, unrestricted�, V is the same
before and after the cluster has been created.

VI. PROFILE OF THE MANY-BODY CLUSTER
WITH HARD-CORE REPULSION AND COLLECTIVE

COLLOIDAL ATTRACTION

Let us briefly discuss the form of the H equation �39� for
some repulsion indices n. The repulsive force scales as L−4 in
two important cases of charged colloidal clusters: on a polar
liquid, when there is the dipole-dipole repulsion �3,6�, and on
a nonpolar liquid when there is a direct repulsion between
the net charges of colloids’ tops above the liquid surface �7�.
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The L−4 repulsion was also assumed in clusters on a nematic
surface �14–16,24� and experimentally confirmed by measur-
ing repulsion of two colloids �24�. In this case, the repulsion
is due to the interaction of elastic dipoles via the nematic
director field �22,23�. For n=4, cnH2/�n−1�=cnH2/3, the H
equation is nonlinear and its solution is not easy to find if the
cluster is circular. Another important case is that of n=6,
which can be realized in a cluster of elastic quadrupoles
�22,23� trapped at a nematic surface �20�, and in a cluster of
charged colloids on a polar interface �13�. Then the H equa-
tion contains nonlinearity H1/2. In both cases, finding an azi-
muthally symmetric solution to the H equation would most
likely involve a numerical approach. To illustrate the general
theory here, we prefer to avoid such complication and con-
sider an easily solved system to demonstrate the general
many-body effect. There is an important and, at the same
time, simple example of a hard-core repulsion. In this case,
the attraction force �35� compresses the cluster until the col-
loids touch each other and thus a densely packed cluster is
formed. The repulsive interaction in this case has the form

Uhc = �� , L � D ,

0, L � D ,
� �44�

where D is a constant equal to the colloid’s diameter. Con-
sider a large cluster of N colloids with radius RN�� and set
P=0. Then the equilibrium density is

� = �4/��cD
2� , r � RN,

0, r � RN,
� �45�

where r is the distance from the cluster’s center. The H equa-
tion �30� with this � has the solution

H�r� = � 4f

p�cD
2 − AI0�r/�� , r � RN,

HbK0�r/��/K0�RN/�� , r � RN,
� �46�

where A is a constant to be found. The function H�r� and its
r derivative at the cluster boundary must be continuous. The
first condition, Hb=H�RN�, reads

Hb =
4f

p�cD
2 − AI0�RN/�� . �47�

The second condition is obtained by differentiating H�r� at
r=RN and equating the derivatives at both sides, which gives

AI1�RN/�� =
HbK1�RN/��
�K0�RN/��

. �48�

To find the solution of the system �47� and �48�, we use the
identity I0�x�K1�x�+ I1�x�K0�x�=1 /x and the large argument
asymptotics of the modified Bessel functions �RN /��1�:
K0�x��K1�x���� /2x exp�−x�, I0��1 /2�x exp�x�. As a re-
sult, the entire envelope profile can be put into the following
final form:

H�r� =
4f

p�cD
2�1 −��RN

2�
e−RN/�I0�r/�� , r � RN,

1

2
�RN/re−�r−RN�/�, r � RN.�

�49�

Thus, within the area covered with colloids, the envelope
height is decreasing from H0�4f / �p�cD

2� at the cluster
center to Hb=H0 /2 at the cluster boundary, and outside the
cluster it decreases �r−1/2 exp�−�r−RN� /��, Fig. 1�a�. Then
formula �35� tells us that the magnitude of the attractive
force on colloids in the cluster ranges from fH0 /2D to
fH0 /D, i.e.,


fattr�RN�
 =
2f2

p�cD
3 � 
fattr�X�
 �

4f2

p�cD
3 = 
fattr�0�
 .

�50�

The total energy Ē of the interface with the cluster is ob-
tained by calculating the integral �41� with the profile H�r�
�49� and employing that RN /��1. The result is

Ē � −
4�f2RN

2

p��cD
2�2�1 −

�

2RN
� . �51�

As the total number of particles N in the cluster is

N =
4�RN

2

�cD
2 , �52�

the total energy of the large cluster can also be expressed as

Ē � −
f2N

p�cD
2 . �53�

The results obtained for the large cluster with the hard-
core colloid repulsion represent a general situation if our
particular colloids’ separation D is replaced by an arbitrary
separation L. The maximum envelope height H0, the energy

per colloid, Ē /N, and the maximum attractive force between
colloids, fattr�0�, can be cast into the form

H0 =
�

ln��/R�
h1, �54�

Ē/N = − �
f2

8��
, �55�

fattr�0� = − �
f2

2��L
= −

4f2

�cpL3 , �56�

where ��L� is the enhancement factor,

��L� =
2��2

S1�L�
=

2��2

�c�L/2�2 . �57�

It shows the many-body enhancement of the pair stabilizing
effect in the cluster. The factor � is of the order
�mm / �a few 	m��2, which gives ��104–105 or even larger.
Thus, H0�h1 and H0 coincides with Eq. �5�. The attraction
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energy per colloid Ē /N in the cluster, where colloids are
separated by L��, is much larger in the magnitude than the
energy �1� of the pair attraction U2�L�. The attractive force
fattr between colloids in a cluster behaves as L−3 and is much
stronger than the pair force f2 /2��L. Formulas �54�–�57�
confirm the results of our qualitative consideration in Sec. II:
according to the estimates made there, for f �10−12N, when
the pair attraction energy would be just U2�10−3kT, the
many-body effect lifts the interface by about 1 	m and in-

duces the attraction of the order Ē /N�102kT. Thus, the mys-
tery of the strong attraction in large clusters on a liquid sur-
face is resolved.

VII. DISCUSSION AND CONCLUSION

The result of this paper is that the many-body effect can
enhance stabilization of colloidal clusters by the factor �
�104–105, and the attraction force scales as L−3. This can
explain the stability and the very existence of two-
dimensional colloidal structures observed in experiments.
The profile of a large cluster consists of a smooth and large
envelope H that is modulated by a fast low-amplitude com-

ponent h̃. The slow envelope H��h1 and can be of order of

a micrometer. The fast component h̃�h1, where h1 is the
usual meniscus height induced by a single remote colloid,
which is usually less than a nanometer. The role of the fast

variation h̃ is the same for a single remote colloid and for a
cluster, i.e., to convert the force on colloids into a pressure
on the interface. The slow H is the collective, many-body
effect reflecting the averaged pressure balance, which cannot
be obtained from a pairwise approximation, whereas the fast

modulation h̃ is the perturbation of this curved “vacuum”
profile by a single colloid. The envelope H is responsible for
the strong attraction and can be found from Eq. �39�, which
incorporates a repulsive force scaling as arbitrary power law
with the exponent n. In conclusion, I will briefly discuss the
experimental data on cluster formation on a nematic liquid
crystal, Refs. �14–16�, and on an isotropic liquid, Refs.
�4–6�.

The experimental data, which most explicitly point to
some mysteriously strong attraction in large clusters of col-
loids on a liquid surface, were obtained on a nematic-liquid-
crystal–air interface by Nazarenko and co-workers �14–16�.
The colloids form hexagonal and quasihexagonal lattices
with different periods L that can coexist �15,16� and be trans-
formed into each other under certain conditions �16�. The
lattice shape, including anisotropy of the quasihexagonal lat-
tice, the transition between the hexagonal, and quasihexago-
nal lattices, and the origin of the repulsion between the col-
loids can be well described under the assumption that the
lattices are stabilized by the capillary attraction induced by a
vertical force on the colloids �16�. This force is definitely due
to the elasticity of the nematic liquid as the stabilization
holds only while the liquid is in its nematic phase and dis-
appears in the isotropic phase. Analysis of Ref. �20� shows,
however, that the repulsion energy in these lattices is at least
four orders of magnitude larger than the pair attraction en-
ergy �1� induced by the upthrust due to the nematic elasticity.

As the lattice period L�10 	m, the many-body enhance-
ment �57� is about ��104 or larger, which explains the sta-
bilization of lattice structures on a nematic-liquid-crystal–air
interface. In addition, the many-body theory predicts that,
because of the different periods, the mean height H in the
hexagonal and quasihexagonal lattices is also different,
which, in principle, can be detected experimentally.

Onoda �4� has observed a cluster formation of 2-	m col-
loids on water under the condition that the repulsion energy
and the chaotic thermal energy were close in their magni-
tudes. Under this condition, the size of a cluster was the most
sensitive parameter of the clusterization process. Once clus-
ters, which had the hexagonal dense packing intrinsic struc-
ture, contained around 14 particles, a permanent order was
observed, whereas smaller clusters could lose colloids and
diminish. Onoda called this clusterization reversible. He at-
tributed the attraction to the van der Waals force as the en-
ergy of the capillary attraction estimated by Eq. �1� was three
orders of magnitude smaller than kT. However, the well-
pronounced dependence of the cluster stability on its size has
certainly a collective nature and indicates that it is a long-
range force that is responsible for the effect. Although our
results were obtained for large clusters, the general trend is
expected to be similar for smaller clusters, too. Then Eq. �57�
clearly shows that the capillary attraction can indeed give the
stabilizing energy �several kT. Small clusters with L�RN
�� deserve individual consideration and will be addressed
elsewhere.

Spreading small charged bids on a liquid surface, Ruiz-
García, Gámez-Gorrales, and Ivlev �5� and then Stamou,
Duschl, and Johannsmann �6� have observed a variety of
clusters and, in particular, two-dimensional circular clusters.
The capillary attraction was found to lack at least five orders
of magnitude to compensate for the electrostatic repulsion of
the charged bids. The idea of Ref. �6� is that, because of
uncontrolled surface patterns, there is variation of h along
the colloid-liquid contact line, which has two very different
scales: the amplitude �50 nm and the wavelength �half of
the length of the contact line �	m. This results in the qua-
drupolar attractive potential �L−4. The main problem of this
approach is that, since the repulsion potential scales as L−3,
for small L the attraction is stronger than the repulsion and
thus the colloids’ surfaces have to be in contact with each
other �the stabilizing repulsion is of the form �44��, whereas
the experiment shows the stabilization for distances L con-
siderably larger than the colloid diameter. In other words, the
attractive potential should decrease slower than L−3. In any
case, this mechanism should be complimented by the collec-
tive capillary attraction, which can be four or five orders of
magnitude higher than the estimate based on the pair poten-
tial �1�. Moreover, the collective attraction with the energy
scaling as L−2 can play the role of the slowly decreasing
attractive potential, mentioned above, and eliminate the main
difficulty, i.e., explaining the large equilibrium separation of
colloids.

To conclude, the collective effect predicted here has a
well-known manifestation: under the force of gravity, drop-
lets of rain on a tent surface tend to coalesce into a single
heavy droplet, which then inflects the tent and can cause
leakage. Campers know that this effect can be quite strong.
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